
BigIntegers unit

An up-to-date version of this and other files can be found in my BigNumbers project on GitHub.

BigIntegers

The trouble with integers is that we have examined only the very small ones. Maybe all the exciting stuff happens at really big numbers,
ones we can’t even begin to think about in any very definite way. Our brains have evolved to get us out of the rain, find where the berries
are, and keep us from getting killed. Our brains did not evolve to help us grasp really large numbers or to look at things in a hundred
thousand dimensions. — Ronald Graham

On many occasions, I missed a BigInteger type in Delphi. I wanted to have a type with which you could do simple things like:

var
A, B, C, D: BigInteger;

begin
A := 3141592653589793238462643383279;
B := 1414213562373095 shl 10;
C := 2718281828459045235360287471352;
D := A + B * C;
Writeln(D.ToString);

Many programming languages, for instance Java, C#, Python, Lisp, Ruby, Smalltalk, Scala, Haskell, Kotlin, etc. have an arbitrary precision integer
type. But in Delphi, there is no proper BigInteger type that

is easy to use,
can handle very long integers,
is optimized for speed and precision,
can handle different numeric bases (binary, hex, decimal, etc.) and
can do more than basic arithmetic.

I have been thinking of using the GNU multi-precision library, but that has one big problem: it is GPL-licensed, which makes it unsuitable for my
needs. So I decided to write my own, using assembler where appropriate, but also thus that pure Pascal routines would be optimal too. It works
well and, as far as I know, faultless.

I initially modelled it after the .NET System.Numerics.BigInteger type, but took up influences from other languages with built-in BigIntegers, like
Common Lisp, Python and Java. And yet I think I managed to make it as “Delphi”-like as possible. It is described below.

In the course of writing this, I had to implement a few other things, which can be useful on their own too. For the most up-to-date version,
download from GitHub.

Take a look at my BigDecimal implementation too. It uses BigIntegers for most of the hard work. It can also be found on GitHub.

Note that I wrote this all on my own. I did not use any code from other implementations, but I did implement algorithms described in papers
from, for instance, Burnikel and Ziegler, Karatsuba, etc.

The BigInteger type

Unlike the integral types in Delphi, the BigInteger type uses a sign-magnitude format, i.e. the magnitude (or absolute value) is always unsigned, and
the sign is an extra bit. A Delphi Integer -1000 is stored as 32-bit value of $FFFFFC18, which is called two’s complement. A BigInteger −1000 is stored
as an always positive magnitude (or absolute value) of 1000 (or hex $000003E8) and a sign bit. This has some implications for bitwise
operations, but more about that later.

The magnitude is stored as a dynamic array of UInt32. I, and as it turned out, also others, call such a single large digit a “limb” (a term you will
see being used later on too). This is because in his book series “The Art of Computer Programming” (a.k.a. TAOCP), Donald Knuth, who describes a
few base case algorithms for multiple precision math in TAOCP Volume 2, calls them so. I also like another term I have seen lately, “bigit”
(biginteger digit).

BigInteger is a record type. This allows it to be used as a value type, like normal integers, i.e. there is no need to worry about the lifetime, and it
also allows the use of operators like *, div, mod, +, -, and, or, xor (and some others), as well as a big number of methods.

The main thing about a BigInteger is that there is a very low chance (virtually nil) that it will overflow, since it will simply grow if more bits are
needed. It can hold enormously huge integer values, theoretically — given enough memory is present — in the order of approximately
24,000,000,000 or 101,290,000,000, in other words, an integer consisting of more than 1 billion digits. The total number of particles in the known

Rudy's Delphi Corner

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

1 of 14 20/01/2019, 02:07

universe is estimated as 1080 or even 1085, so a BigInteger can theoretically hold a vast multitude of that number.

Initialization

Unfortunately, there is no way to define a large integer literal like:

B := 3141592653589793238462643383279;

But yet, there are several ways to get values into a BigInteger. You can use constructors, like

A := BigInteger.Create(17);

or (implicit or explicit) conversion operators like

B := '3141592653589793238462643383279'; // string
C := -17; // integral type
E := BigInteger(6e30); // floating point type

or functions and expressions like

D := 6 * BigInteger.Pow(10, 30); // 6 * 10^30 exactly, unlike the floating point
// value 6e30 which is only an approximation.

Constructors

Although BigInteger is a record type and record constructors are no real constructors, and the syntax used can deceive you into thinking a new
instance is allocated somewhere, I think records should have them, for initialization. But note that it doesn’t matter if you do:

A := BigInteger.Create(17);

Or just:

A.Create(17);

Both will do exactly the same and initialize A with the value 17.

The constructors defined are:

constructor Create(const Limbs: array of TLimb;
 Negative: Boolean); overload;

Sets up a BigInteger using the Limbs array as the (unsigned)
magnitude and Negative as the sign

constructor Create(const Data: TMagnitude;
 Negative: Boolean); overload;

Sets up a BigInteger using the Magnitude array as the (unsigned)
magnitude and Negative as the sign

constructor Create(const Int: BigInteger); overload; Sets up a BigInteger with the value of the given BigInteger

constructor Create(const Int: Int32); overload; Sets up a BigInteger with the value of the given signed integer

constructor Create(const Int: UInt32); overload; Sets up a BigInteger with the value of the given unsigned integer

constructor Create(const Int: Int64); overload; Sets up a BigInteger with the value of the given 64-bit signed integer

constructor Create(const Int: UInt64); overload; Sets up a BigInteger with the value of the given 64-bit unsigned
integer

constructor Create(const ADouble: Double); overload; Sets up a BigInteger with the value of the given Double . How this is
done depends on the setting of the property
BigInteger.RoundingMode (see below)

constructor Create(
const Bytes: array of Byte); overload;

Sets up a BigInteger using the bytes in Bytes as a two’s complement
value. The opposite of the function ToByteArray .

constructor Create(NumBits: Integer;
const Random: IRandom); overload;

Sets up a BigInteger with a random value, with a size of NumBits bits
and a value determined by the given IRandom interface (see below)

Byte array parameter

The bytes in the byte array are considered to be in little-endian two’s complement format. That means that if the top bit of the most significant
byte is set, then the value in the bytes is interpreted as negative. Say you want to pass a value of 129. Then your array must contain two bytes:
$81, $00, because a single $81 is interpreted as -127. Likewise, if you want to pass -129, you must pass $7F, $FF, because $7F is interpreted as
+127.

Note that this is like in C#, which also accepts a byte array in little-endian order, but unlike in Java, which requires a big-endian byte array.

RoundingMode

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

2 of 14 20/01/2019, 02:07

The global RoundingMode property governs how a Double is converted to a BigInteger. It can have the following values.

rmTruncate Any fraction of the Double is discarded. This rounds toward 0 and is the default.

rmSchool How I learned to round in school: any absolute fraction >= 0.5 rounds “up” (away from 0). So 1.5 rounds to 2 and -1.5
rounds to -2. But 1.49999 rounds to 1.

rmRound Rounds the same way as the System.Round function. Any (absolute) fraction > 0.5 (this excludes 0.5 itself) is rounded
away from 0. So 1.5 rounds to 1, but 1.50001 rounds to 2.

Note that, due to the fact that floating point values can only have a limited precision, the results may not always be what you expect. A double
value like 6e30 will not result in a BigInteger with an exact value of 6000000000000000000000000000000 (a 6 with 30 zeroes), because the Double
is not precise enough to hold such an exact value. The result is actually 5999999999999999556357795610624, which is the conversion of the
closest a Double can get to 6e30. If you want exact values, do not use floating point values as input. Use strings or functions like BigInteger.Pow
instead (see below). To obtain exactly 6e30, you can use 6 * BigInteger.Pow(10, 30).

IRandom

I was not sure how to generate a random BigInteger. Other languages seem to use separate Random classes for this. I wanted to avoid any
manual memory management for random numbers, so I declared an interface (called, you guessed it, IRandom) with a few suitable methods
and two implementations, the first being TRandom, using the simple algorithm Knuth proposes and which Java seems to use (using an 48 bit
seed) and the second, TDelphiRandom, which uses the built-in System.Random functions to generate random values. Both classes can be found
in unit RandomNumbers.pas, included in the download. If you want to create your own, inherit from TRandom and override the virtual
parameterless function Next().

Implicit conversions and class functions

To get a value into a BigInteger, you don’t have to use constructors. There are implicit operators that allow you to assign several integer types
directly, for instance:

var
A, B, C: BigInteger;

begin
A := -1;
B := 200*1000*1000; // My usual way to write a literal like 200,000,000
C := -$8000000;
D := BigInteger(Pi * 1e20);

Another way is to use functions like Pow(), e.g.

var
A: BigInteger;

begin
A := BigInteger.Pow(10, 85); // 10^85

The most convenient way, however, to get a well defined big number into a BigInteger is to use its string parsing capabilities, which also allow
you to assign a string, like so:

var
A, B: BigInteger;

begin
A := '671998030559713968361666935769';
B := '-$2940C583C5C79C8A70261FEE080A73B5B23556A5CF802BAB81DB08546F3623D5';

Numeric base

Beside parsing simple decimal numbers like the ones in the code snippet above, the parser can do a bit more. But I will first have to explain the
numeric base. This is the base used for text input as well as text output of a BigInteger. I guess everyone knows decimal (base 10) numbers like
1000 or -17. But in Delphi, we know hexadecimal numbers (base 16) too, like $7F00. Some languages, like C or Java, also know octal (base 8), in
the form 017 which is the same as 1*8 + 7, or decimal 15. The BigIntegers unit knows a bit more. It can have any default base from 2 to 36
(where base 36 has the “digits” 0..9 and A..Z, where A=10 and Z=35). You can set or query the default base by accessing the BigInteger.Base class
property. That it is a class property means that it is the same for all BigIntegers.

The default numeric base affects input and output. So if you do:

var
A, B: BigInteger;

begin
BigInteger.Base := 16;
A := '100';
BigInteger.Base := 10;
Writeln('A in decimal is: ', A.ToString);

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

3 of 14 20/01/2019, 02:07

The output is:

A in decimal is: 256

BigInteger knows a few shortcut methods for the most usual base values, so instead of writing

BigInteger.Base := 16;

you can write

BigInteger.Hex;

The convenience methods are:

Name Base
value

Binary 2 Binary, e.g. '01011010'

Octal 8 Octal, e.g. '377'

Decimal 10 Decimal

Hexadecimal 16 Hexadecimal, e.g. '12BEEF34'

Hex 16 Short for Hexadecimal

Parsing

The methods Parse, TryParse and the implicit conversion operator (which allows you to assign a string to a BigInteger) allow for a few tricks to
make it easy to enter numbers.

class function TryParse(const S: string;
 Base: TNumberBase;
out Res: BigInteger): Boolean; overload; static;

Tries to parse the specified string into a valid BigInteger value in the
specified numeric base. Returns False if this failed.

class function TryParse(const S: string;
out Res: BigInteger): Boolean; overload; static;

Tries to parse the specified string into a valid BigInteger value in the
default BigInteger numeric base. Returns False if this failed.

class function Parse(const S: string): BigInteger;
static;

Parses the specified string into a BigInteger , using the default
numeric base. Raises an exception if this is not possible.

class operator Implicit(
const Value: string): BigInteger;

Implicitly (i.e. without a cast) converts the specified string to a
BigInteger . The BigInteger is the result of a call to Parse(Value) .

There are a few things to know about the strings that can be valid BigIntegers:

To make it easier to increase the legibility of large numbers, any ‘_’ or ’ ‘, anywhere in the numeric string, will completely be ignored, so
’1_000_000_000’, ‘1 000 000 000’ and ‘1000000000’ are exactly equivalent.
The string to be parsed is considered case insensitive, so ‘$ABC’ and ‘$abc’ represent exactly the same value.
The number can be prefixed with a sign, either ‘+’ or ‘-’ with the usual meaning, i.e. a prefix of ‘-’ will result in a negative number, the
prefix ‘+’ in a positive one. If a sign prefix is omitted, ‘+’ is assumed.

Usually, the string that is parsed is assumed to be in the base that is set with BigInteger.Base. But there are a few overrides that disregard the
default base and give the number a specified base. Like in Delphi, this is done with a prefix:

Prefix Base

$ 16 Hex, like in Delphi, e.g. '-$8000' for decimal -32768

0x 16 Hex, like in C and C++, e.g. '-0x8000' for decimal -32768

0d 10 Decimal, e.g. '0d1234' for decimal 1234

0b 2 Binary, e.g. '-0b11001010' for decimal -202

0o 8 Octal, e.g. '0o377' for decimal 255

0k 8 (Better readable) alternative form for octal, e.g. '0k377' for decimal 255

%nnR nn nn stands for one or two decimal digits and gives the base (or radix) to be used. So '-%36rRudyVelthuis' is a valid
BigInteger number in base 36

I made sure that simple numbers starting with a ‘0’ are not automatically regarded as octal, like they are in C. Any of the valid prefixes starting
with ‘0’ has an alphabetic second character.

An example:

procedure Test;
var
A: BigInteger;

begin

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

4 of 14 20/01/2019, 02:07

BigInteger.Decimal;
A := '-%36r Rudy Velthuis'; // Yes, that's my name
Writeln(A.ToString);
BigInteger.Base := 36;
Writeln(A.ToString);
BigInteger.Base := 35;
Writeln(A.ToString);

end;

The output is:

-3664889415200015812
-RUDYVELTHUIS
-12XJI7QCQ4S0C

Note that the three lines above represent the exact same number, but in a different base.

Examples of valid BigInteger strings:

String Decimal value

'0' 0

'1' 1

'01' 1

'0x123' 291

'$0123' 291

'-$17' −23

'12340' 12340

'%10r12345678901234567890' 12345678901234567890

'0d12345678901234567890' 12345678901234567890

'$12345678901234567890' 85968058271978839505040

'%16R12345678901234567890' 85968058271978839505040

'0x12345678901234567890' 85968058271978839505040

'-17234' −17234

'+17234' 17234

'0O7771234567' 1071987063

'0k7771234567' 1071987063

'%8R7771234567' 1071987063

'-0b000100100011010001010110011110001001101010111100' −20015998343868

'0b0001_0010_0011_0100_0101_0110_0111_1000_1001_0000' 78187493520

'$7fffffff9876543289abcdef01234567' 170141183428425841568023956577411351911

'$7fffffff_98765432_89abcdef_01234567' 170141183428425841568023956577411351911

'%16R 7FFFFFFF 98765432 89ABCDEF 01234567' 170141183428425841568023956577411351911

'$1234567898765432FFFFFF80' 5634002667517048507802320768

'%36rRudyVelthuis' 3664889415200015812

'%35rRudyVelthuis' 2690686858144915658

'$DEADBEEF' 3735928559

'%16r_DEADB_EE_F' 3735928559

'$ De ad Be ef' 3735928559

'%26rDead_Beef' 108863310779

'%36rDeadBeef' 1049836114599

'-$cc ' −204

'+0X0' 0

'-0X00000000000000d' −13

'%36rABCDEFGHIJKLMNOPQRSTUVWXYZ' 8337503854730415241050377135811259267835

'-%36Rabcdefghijklmnopqrstuvwxyz' −8337503854730415241050377135811259267835

Seeing 'RUDYVELTHUIS' as a valid big integer still needs some getting used to. <g>

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

5 of 14 20/01/2019, 02:07

Output

There are two simple output routines.

function ToString: string; overload; Returns a string representation of the BigInteger in the current
default numeric base

function ToString(Base: Byte): string; overload; Returns a string representation of the BigInteger in the given
numeric base

The second version, ToString(Base) accepts only Base values in the range 2..36.

I also implemented a few convenience methods for this:

function ToBinaryString; Shortcut for ToString(2)

function ToOctalString; Shortcut for ToString(8)

function ToDecimalString; Shortcut for ToString(10)

function ToHexString; Shortcut for ToString(16)

UPDATE (7 Feb 2016)

The classic ToString(Base) method (which is still available as ToStringClassic) simply did a DivMod by 10, turned the remainder into a digit and then
repeated this with the quotient until the value of the BigInteger was 0. That worked fine, but when I wanted to turn the currently largest known
prime, 274,207,281 − 1, into a string, I thought my computer had hung up. Well, the result is a 22 million digit string, and (what is now)
ToStringClassic simply repeatedly divided that huge number by 10, leaving a still huge quotient, with one digit less each time. This was, of course,
even with Burnikel & Ziegler’s division algorithm, dead slow.

To improve things, I came up with a divide-and-conquer algorithm which divides the huge number by a power of ten that more or less splits it
in half, and then recursively calls itself for the remainder and the quotient, so on each recursion, only half of the number has to be converted.
Very small values are then converted using an optimized version of ToStringClassic. This cut the time for ToString(10) to form a 22,338,618 digit
string down to approx. 150 seconds.

I really came up with this algorithm myself, although it turned out I was not the first. :-(

For what it’s worth, I also modified ToString(Base) for bases 2, 4 and 16 to take advantage of the fact that these only have to shift limb-wise, in a
simple nested loop, to get the digits. The same huge number was converted using ToString(16) in – hold on, hold on… 133ms, in other words,
more than 1,000 times as fast as ToString(10). This shows that base conversions can be quite slow, and that it makes sense to treat different
bases differently.

I intend to do something similar for the parser, but note that this is not a priority, at the moment.

Arithmetic operators and functions

The following functions and operators are defined for arithmetic with BigIntegers:

class operator Add(
const Left, Right: BigInteger): BigInteger;

Adds two BigIntegers, operator +

class function Add(
const Left, Right: BigInteger): BigInteger;
static;

Adds two BigIntegers

class operator Subtract(
const Left, Right: BigInteger): BigInteger;

Subtracts two BigIntegers, operator -

class function Subtract(
const Left, Right: BigInteger): BigInteger;
overload; static;

Subtracts two BigIntegers

class operator Multiply(
const Left, Right: BigInteger): BigInteger;
overload; static;

Multiplies two BigIntegers, operator *

class function Multiply(
const Left, Right: BigInteger): BigInteger;
overload; static;

Multiplies two BigIntegers.

class function MultiplyBaseCase(
const Left, Right: BigInteger): BigInteger;
overload; static;

Multiplies two BigIntegers using base case or “schoolbook”
multiplication. This may be called internally by Multiply and
MultiplyKaratsuba .

class function MultiplyKaratsuba(
const Left, Right: BigInteger): BigInteger;
overload; static;

Multiplies two BigIntegers using the Karatsuba algorithm. This may be
called internally by Multiply and MultiplyToomCook3 .

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

6 of 14 20/01/2019, 02:07

class function MultiplyToomCook3(
const Left, Right: BigInteger): BigInteger;
overload; static;

Multiplies two BigIntegers using the Toom-Cook 3-way algorithm. This
may be called internally by Multiply .

class operator Multiply(
const Left: BigInteger;

 Right: Word): BigInteger;

Multiplies a BigInteger with a Word , operator *

class operator Multiply(
 Left: Word;
const Right: BigInteger): BigInteger;

Multiplies a Word with a BigInteger , operator *

class operator IntDivide(
const Left, Right: BigInteger): BigInteger;

Divides two BigIntegers , operator div

class function Divide(
const Left, Right: BigInteger): BigInteger;
static;

Divides two BigIntegers .

class operator Modulus(
const Left, Right: BigInteger): BigInteger;

Returns the remainder after the division of the given BigIntegers ,
operator mod

class function Remainder(
const Left, Right: BigInteger): BigInteger;
static;

Returns the remainder after the divison of two BigIntegers

class procedure DivMod(
const Dividend, Divisor: BigInteger;

 var Quotient, Remainder: BigInteger);
static;

Returns quotient and remainder after the integer division of
Dividend by Divisor . They are the result of the same internal
operation. Is called internally by Divide and Modulus .

class function DivModBaseCase(
const Left, Right: BigInteger): BigInteger;
static;

Divides two BigIntegers using simple “schoolbook” division. My be
called internally by DivMod .

class function DivModBurnikelZiegler(
const Left, Right: BigInteger): BigInteger;
static;

Divides two BigIntegers using the Burnikel-Ziegler algorithm. May be
called internally by DivMod .

class operator Negative(
const Int: BigInteger): BigInteger;

Returns the negation of a BigInteger , unary operator -

Bitwise operators

The following bitwise operators are defined for BigIntegers. Note that these have two’s complement semantics, so before any bitwise operations
are performed, the internal format is converted to two’s complement. Aftwerward, the result is converted to sign-magnitude again.

class operator BitwiseAnd(
const Left, Right: BigInteger): BigInteger;

Returns the result of the bitwise AND operation.
Operator and .

class operator BitwiseOr(
const Left, Right: BigInteger): BigInteger;

Returns the result of the bitwise OR operation.
Operator or .

class operator BitwiseXor(
const Left, Right: BigInteger): BigInteger;

Returns the result of the bitwise XOR operation.
Operator xor .

class operator LogicalNot(
const Int: BigInteger): BigInteger;

Returns the result of the bitwise NOT operation.
Operator not .

The following shift operators perform, unlike usual in Delphi, arithmetic shifts. This means that the sign bit is preserved, so negative numbers
remain negative.

class operator LeftShift(
const Value: BigInteger;

 Shift: Integer): BigInteger;

Shifts the specified BigInteger value the specified number of bits to
the left (away from 0). The size of the BigInteger is adjusted
accordingly.
Operator shl .

class operator RightShift(
const Value: BigInteger;

 Shift: Integer): BigInteger;

Shifts the specified BigInteger value the specified number of bits to
the right (toward 0). The size of the BigInteger is adjusted
accordingly. The sign is preserved, so -128 shr 8 does not end up as
0, but as -1 instead.
Operator shr .

Relational operators and function

The following relational operators and functiond are defined for BigIntegers.

class operator Equal(
const Left, Right: BigInteger): Boolean;

operator =

class operator NotEqual(
const Left, Right: BigInteger): Boolean;

operator <>

class operator GreaterThan(
const Left, Right: BigInteger): Boolean;

operator >

class operator GreaterThanOrEqual(
const Left, Right: BigInteger): Boolean;

operator >=

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

7 of 14 20/01/2019, 02:07

class operator LessThan(
const Left, Right: BigInteger): Boolean;

operator <

class operator LessThanOrEqual(
const Left, Right: BigInteger): Boolean;

operator <=

class function Compare(
const Left, Right: BigInteger): Integer;
static;

Returns -1 if Left < Right ; 1 if Left > Right ; 0 if Left = Right

Conversion operators and functions

The following conversion functions perform a conversion to built-in Delphi types. If the value of the BigInteger is too large, an EConvertError is
raised.

function AsDouble: Double; Converts the BigInteger to a Double if that is possible. Raises an
exception if not.

function AsInteger: Integer; Converts the BigInteger to an Integer if that is possible. Raises an
exception if not.

function AsCardinal: Cardinal; Converts the BigInteger to a Cardinal if that is possible. Raises an
exception if not.

function AsInt64: Int64; Converts the BigInteger to an Int64 if that is possible. Raises an
exception if not.

function AsUInt64: UInt64; Converts the BigInteger to a UInt64 if that is possible. Raises an
exception if not.

The following implicit conversion operators (the conversions generally do not require a cast) perform a conversion from built-in Delphi types to
a BigInteger.

class operator Implicit(
const Int: Integer): BigInteger;

Implicitly converts the specified Integer to a BigInteger .

class operator Implicit(
const Int: Cardinal): BigInteger;

Implicitly converts the specified Cardinal to a BigInteger .

class operator Implicit(
const Int: Int64): BigInteger;

Implicitly converts the specified Int64 to a BigInteger .

class operator Implicit(
const Int: UInt64): BigInteger;

Implicitly converts the specified UInt64 to a BigInteger .

The following explicit conversion operators, (conversions requiring a cast) from BigInteger to built-in Delphi types do not raise exceptions, but
truncate or sign extend the values to make them fit, just like Delphi does.

class operator Explicit(
const Int: BigInteger): Integer;

Explicitly converts the specified BigInteger to an Integer .

class operator Explicit(
const Int: BigInteger): Cardinal;

Explicitly converts the specified BigInteger to a Cardinal .

class operator Explicit(
const Int: BigInteger): Int64;

Explicitly converts the specified BigInteger to an Int64 .

class operator Explicit(
const Int: BigInteger): UInt64;

Explicitly converts the specified BigInteger to an UInt64 .

class operator Explicit(
const Int: BigInteger): Double;

Explicitly converts the specified BigInteger to a Double .

class operator Explicit(
const ADouble: Double): BigInteger;

Explicitly converts the specified Double to a BigInteger , using the
constructor for that. More about that can be found under
constructors, above.

Conversion to bytes

The individual bytes in the array returned by the following method appear in little-endian order.

function ToByteArray: TArray<Byte>; Converts a BigInteger value to a byte array. The array is in little-
endian order, i.e. the least significant byte comes first.

Negative values are written to the array using two’s complement representation in the most compact form possible. For example, -1 is
represented as a single byte whose value is $FF instead of as an array with multiple elements, such as $FF, $FF or $FF, $FF, $FF, $FF.

Because two’s complement representation always interprets the highest-order bit of the last byte in the array (the byte at position High(Array))
as the sign bit, the method returns a byte array with an extra element whose value is zero to disambiguate positive values that could otherwise
be interpreted as having their sign bits set. For example, the value 120 or $78 is represented as a single-byte array: $78. However, 129, or $81, is
represented as a two-byte array: $81, $00. Something similar applies to negative values: -179 (or -$B3) must be represented as $4D, $FF.

You can, inversely, convert such a byte array to a BigInteger again, using the already mentioned:

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

8 of 14 20/01/2019, 02:07

constructor Create(
const Bytes: array of Byte); overload;

Sets up a BigInteger using the bytes in Bytes as a two’s complement
value. The opposite of the function ToByteArray .

Mathematical methods

The following mathematical methods are implemented:

class function Abs(
const Int: BigInteger): BigInteger; overload; static;

Returns the absolute value of a BigInteger

function Abs: BigInteger; overload; Returns the absolute value of the current BigInteger

class function GreatestCommonDivisor(
const Left, Right: BigInteger): BigInteger;
static;

Returns the (positive) greatest common divisor of the specified
BigInteger values.

class function Ln(
const Int: BigInteger): Double; overload; static;

Returns the natural logarithm of the value in Int.

function Ln: Double; overload; Returns the natural logarithm of the current value.

class function Log(
const Int: BigInteger;

 Base: Double): Double; overload; static;

Returns the logarithm to the specified base of the value in Int.

function Log(Base: Double): Double; overload; Returns the logarithm to the specified base of the current value.

class function Log2(
const Int: BigInteger): Double; overload; static;

Returns the logarithm to base 2 of the value in Int.

function Log2: Double; overload; Returns the logarithm to base 2 of the current value.

class function Log10(
const Int: BigInteger): Double; overload; static;

Returns the logarithm to base 10 of the value in Int.

function Log10(
const Int: BigInteger): Double; overload;

Returns the logarithm to base 10 of the current value.

class function Max(
const Left, Right: BigInteger): BigInteger;
static;

Returns the greater of two specified values.

class function Min(
const Left, Right: BigInteger): BigInteger;
static;

Returns the lesser of two specified values.

class function ModPow(
const Value: BigInteger;

 Exponent: Integer;
const Modulus: BigInteger): BigInteger; static;

Returns the specified modulus value of the specified value raised to
the specified power.

class function Pow(
const Value: BigInteger;

 Exponent: Integer): BigInteger; static;

Returns the specified value raised to the specified power.

class function ModInverse(
const Value, Modulus: BigInteger): BigInteger;
static;

Returns the modular inverse of Value mod Modulus.

Returns an EInvalidArgument exception if there is no modular
inverse.

class function NthRoot(const Radicand: BigInteger;
 Nth: Integer): BigInteger; static;

Returns the nth root of the radicand. This means that, for instance,
with Nth = 3 , it returns the cube root. With Nth = 2 , it returns the
same as Sqrt .

class procedure NthRootRemainder(
const Radicand: BigInteger; Nth: Integer;
var Root, Remainder: BigInteger); static;

Puts the nth root of the radicand in Root and the remainder in
Remainder .

class function Sqrt(
const Radicand: BigInteger): BigInteger; static;

Returns the square root of the radicand.

class procedure SqrtRemainder(
const Radicand: BigInteger;
var Root, Remainder: BigInteger); static;

Puts the square root of the radicand in Root and the remainder in
Remainder .

class function Sqr(
const Value: BigInteger): BigInteger; static;

Returns the square of the given BigInteger , i.e. Value * Value .

Bit fiddling

The following methods to do bit fiddling are implemented. They follow two’s complement semantics, so a value of, say, -$1234000 is regarded
as $EDCC0000 and bits are accessed accordingly. You can access bits past the current size of the BigInteger. The BigInteger is expanded if that is
necessary to contain the new value.

For what it’s worth: for negative values, these methods can be slow (because of the need to turn the internal sign-magnitude format into two’s
complement) and thus are not fit for the implementation of bit sets and the like.

function TestBit(Index: Integer): Boolean; Returns True if the bit at the given position is set.

function SetBit(Index: Integer): BigInteger; Returns a new BigInteger with the given bit set.

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

9 of 14 20/01/2019, 02:07

function ClearBit(Index: Integer): BigInteger; Returns a new BigInteger with the given bit cleared.

function FlipBit(Index: Integer): BigInteger; Returns a new BigInteger with the given bit flipped.

Note that the above does not mean that the size of a BigInteger is always expanded if you access a bit past its size. Say, you have a BigInteger like
this:

var
Q1, Q2: BigInteger;

begin
Q1 := '-$12';

The two’s complement value of that is $FFFFFFEE, or $FFFFFFFFFFFFFFEE or even more $F‘s in front, because the value is negative. In other words, in
two’s complement, any bit beyond the most significant bit of a negative value is regarded as being set (and likewise, any bit beyond the most
significant bit of a positive value or 0 is regarded as being clear). So doing:

Q2 := Q1.SetBit(100000);

does not return a different value, because, in two’s complement, bit 100000 is regarded as being set anyway. The result is still -$12, so in this case,
SetBit simply returns Self.

Note that FlipBit will always return a different value.

The following functions also provide information about the bits of a BigInteger:

function BitLength: Integer; Returns the bit length, the minimum number of bits needed to
represent the value, excluding the sign bit. At the same time, this is
the index of the highest set bit.

function BitCount: Integer; Returns the number of set bits (cardinality) in the value.

function LowestSetBit: Integer; Returns the bit index of the lowest bit that is set, which is, at the same
time, the number of trailing zero bits.

Properties

The following properties are defined by a BigInteger. Apart from the last one, Base, they are all instance properties describing the BigInteger.

property Size: Integer read; The number of limbs used for the magnitude.

property Allocated: Integer read; The number of limbs actually allocated. If the RESETSIZE conditional is
defined, the internal Compact procedure will occasionally shrink an
allocated array that is too large. That can affect performance, so by
default, allocations are never shrunk. Of course, if a BigInteger goes
out of scope, the allocated array will be released completely.

property Negative: Boolean read; True@ if the BigInteger is negative.

property Sign: Integer read write; Either $80000000 if the BigInteger is negative, or $00000000 if it is
positive.

property Magnitude: TMagnitude read; The array of unsigned 32-bit integers containing the magnitude of the
BigInteger .

class property Base: TNumberBase read write; The default numeric base to be used for input and output.

Conditional defines

The following conditional defines can be used. Note that some are off by default. This is reflected in the source file, e.g. the conditional
PUREPASCAL is easily turned off by turning

{$DEFINE PUREPASCAL}

into a mere comment:

{ $DEFINE PUREPASCAL}

PUREPASCAL If this conditional is set, no assembler is used.

RESETSIZE If this conditional is set, the Compact internal routine shrinks the internal buffer if the required size of the BigInteger gets
smaller than half of the allocated size. This can reduce memory usage, bit is can also make code a little slower. By default, this
is off, and buffers are never shrunk.

Experimental This conditional is can be used to shield off working code to do experiments. See text box below.

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

10 of 14 20/01/2019, 02:07

During development, I use the Experimental conditional to shield off existing and working (but perhaps too slow) code from experimental code, by
doing something like this:

{$IFDEF Experimental}
// ... the new, experimental code

{$ELSE !Experimental}
// ... the working original code

{$ENDIF !Experimental}

With this setup, it is easy to switch between working, original code and new code, e.g. to debug the values the new code should produce (i.e. the
values the original working code already produces), just by turning Experimental off or on.

Internal format

The internal format of a BigInteger is quite simple. It consists of two private data members (fields). They should only be manipulated indirectly,
using the various methods and operators defined for the BigInteger. Of course you can access them using a trick, but it is not recommended.

Field Type Function

FData TArray<TLimb> Magnitude The magnitude of the BigInteger

FSize Integer Size and sign
bit

The lower 31 bits contain the number of limbs the magnitude has, the top bit contains the sign bit (if
the bit is set, the BigInteger is negative)

Note that FSize is not two’s complement either. The lower bits are unsigned, and the sign bit has no relation to them. So negating a BigInteger is
as simple as flipping the top bit of FSize.

In the above, the term “limb” is used a few times. A TLimb is one of the elements of the array that forms the magnitude of the BigInteger. It is
declared as:

type
PLimb = ^TLimb;
TLimb = type UInt32;

Even in 64-bit Windows, I decided to use the same 32-bit limbs. This makes some 64-bit code a lot easier, and probably not slower.

Speed

For Windows, most of the time critical routines are implemented in 32-bit or 64-bit built-in assembler. For other platforms, or if the PUREPASCAL
conditional is defined, they are completely implemented in plain Object Pascal. I optimized the routines as much as I could, sometimes with the
help of the good people on StackOverflow.com (see sources).

Optimizations

Many of the routines use unrolled loops and other small-scale optimizations, not only in assembler, but also in PUREPASCAL. Most of the 64 bit
assembler processes 64 bit (i.e. 2 limbs) at once. If this made sense, 64 bit variables were used. Just read the source code and see for yourself.

After a lot of reading and testing I was able to implement higher level, divide-and-conquer algorithms for faster operations (see, for example,
this pdf and this website as well). As the Wikipedia article says: A divide and conquer algorithm works by recursively breaking down a problem
into two or more sub-problems of the same (or related) type (divide), until these become simple enough to be solved directly (conquer).

Karatsuba and Toom-Cook 3-way

For faster multiplication, recursive algorithms described by Anatolii Alexeevitch Karatsuba and by Andrei Toom and Stephen Cook (the 3-way
algorithm) were implemented.

These are much more complicated than simple base case multiplication, but also asymptotically faster. However, due to the overhead in these
functions, they are only faster if the sizes of the BigIntegers are above certain thresholds. That is why multiplication only uses Karatsuba when
both sizes are above BigInteger.KaratsubaThreshold and it uses Toom-Cook 3-way when the size of one of both operands is above
BigInteger.ToomCook3Threshold. These thresholds differ for 32-bit and 64-bit, as well as for PUREPASCAL or assembler-based code.

Usually, the Multiply() function will decide which algorithm is used, but I also made functions MultiplyBaseCase (normal “schoolbook”
multiplication), MultiplyKaratsuba and MultiplyToomCook3 public, if you have a special reason to use one of these. Note that MultiplyToomCook
falls back to Karatsuba, and MultiplyKaratsuba falls back to base case if the operands do not meet the threshold criteria.

Because of the recursion, both algorithms are much faster than normal “schoolbook” multiplication. I measure a speed increase of almost 10
for BigIntegers with more than 6,400 limbs (a limb is the basic building block of BigInteger, a 32 bit unsigned integer), i.e. more than 61,000
decimal digits.

There are faster, even more complicated algorithms, e.g. the FFT-based Schönhage-Strassen algorithm for very large BigIntegers. I did not
implement any of those yet.

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

11 of 14 20/01/2019, 02:07

Burnikel-Ziegler

For faster division (and modulus), I implemented the divide-and-conquer algorithm described by Christoph Burnikel and Joachim Ziegler. The
speed of this is more or less limited by the speed of multiplication. It mainly consists of two routines, DivTwoDigitsByOne and
DivThreeHalvesByTwo, which call each other recursively until sizes get below a certain threshold. Then normal base case (“Knuth”) division is
used. The paper linked to explains the algorithm quite nicely, without much ado. It is quite a bit faster than normal “Knuth” division, especially
for very large values.

There are faster algorithms, e.g. the Barrett algorithm or Montgomery reduction for extremely large BigIntegers, but I did not implement any of
those yet.

It took me a while to wrap my head around stuff like Karatsuba (OK, that one was easy), Toom-Cook, Burnikel-Ziegler, Miller-Rabin, Newton-
Raphson, Schönhage-Strassen, Barrett, Montgomery, etc. I have done a lot of reading, and while doing that, I learned a lot of other things as well.

Allocation

As described above, if the RESETSIZE conditional is defined, the internal Compact procedure will shrink the size of the allocated array if Size
becomes less than half the allocated size (Length) of the FData array. Such a reallocation can negatively affect performance, so by default, the
conditional is not defined, and FData is never shrunk. But this does not mean that eventually, you will get an enormous amount of memory
leaks. FData is a normal dynamic array, so if the last reference to it is lost, it will be freed entirely.

Copy-on-write (COW)

The methods and operators of BigInteger follow the COW principle. This means that if you just assign one BigInteger to another, only a shallow
copy is made. The FData pointer is copied and its reference count is updated, but the entire contents of the FData are not copied. Because of
this, several BigIntegers with the same value can share one FData array. Only if one of these BigIntegers is about to be modified, a new copy of
the data for that BigInteger is made, while the others can still reference the original FData.

An example:

var
A, B, C, D: BigInteger;

begin
A := 17; // A gets new FData array with contents 17
B := A; // B.FData points to same array as A.FData
C := B; // C.FData points to same array as B.FData and A.FData
B := A + 1; // B gets new array, but A and C still reference array with value 17.
...

Note that, despite of the above, most of the time, BigIntegers should and can be treated as immutable, i.e. most methods or operators operating
on BigIntegers return a new one, instead of changing the value of one of the operands. Even a function like SetBit does not modify the BigInteger on
which it is called. It returns a new one with the given bit set. Only some self-referential instance methods modify the value of Self and Inc and Dec
modify the value of the operand.

Partial-flags stall problems

This is a problem that caused me some headaches before I could solve it. I noticed that on some CPUs, against all expectations, the PUREPASCAL
routines were faster than the assembler routines. This turned out to be due to a partial-flags stall.

In assembler, on some “older” CPUs, certain loop code combining the opcodes INC and/or DEC with ADC and/or SBB or other instructions
reading the carry flag, can cause a considerate slowdown (up to 3 times as slow), because of a so called partial-flags stall, which happens when
instructions like INC or DEC write only some of the flags, while other instructions (e.g. ADC and SBB) read other flags.

I coded routines (using LEA and JECXZ/JRCXZ instead of INC/DEC/JNE) that avoid that problem, but on CPUs that do not have the problem, these
modified routines are a bit slower than the “plain” routines. So now, at startup, the unit determines, with a few timing loops, which of the
routines it should use: the plain ones or the modified ones. So, on CPUs that are not affected, plain code using INC/DEC/JNE is used. That is
faster than the modified procedures. But on older, affected CPUs, modified code using LEA/JECXZ is used. On these CPUs, the modified code is
much faster than the plain code. At the moment, only code for addition and subtration is different. The problem does not occur in other
routines, probably because in these routines another instruction (e.g. ADD or CMP) will set the full flags register before it is read.

But every now and then, due to unexpected events happening that mess up the timing, the decision taken by the unit can be wrong, or you may
have other reasons to choose one implementation over the other. For that, you can use:

BigInteger.AvoidPartialFlagsStall(True); // True to make BigInteger use modified routines,
// False to make it use plain ones.
// Omit routine to keep the setting the unit
// measured.

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

12 of 14 20/01/2019, 02:07

Whether plain or modified routines are used can be queried from the property:

property StallAvoided: Boolean; Returns True if modified routines are used, or False for plain
routines.

If you know a better way to determine the affected CPUs than the simple timing loops I am using, please send me a note.

Bitwise operators and negative values

As I explained already, bitwise operators like and, or and xor use two’s complement semantics. This means that before the operations on the
values are performed, they are converted from the usual sign-magnitude to two’s complement. For positive values, that means that nothing has
to be done, but negative values must be negated completely. I found ways to get around that, partially. People on StackOverflow helped me, as
well as the many bitwise tricks mentioned in Hacker’s Delight.

Visualizer

All the time when working, to find the numeric value of a BigInteger, let’s call it X, in the debugger, I had to either add a watch entry with
X.ToString, or I had to run a little piece of code. So I decided to write a debugger visualizer for it. Here you can see it in action:

Here value A, which was initialized with the string above it, is displayed in the tooltip.

I had hoped it would be easy, but it turned out that the IDE only passes you a string like

'(FData:(4294967295 {$FFFFFFFF}, 4294967295 {$FFFFFFFF}, 4294967295 {$FFFFFFFF}, 0, 0, 0, 0, 0); FSize:3)'

or, in the Local Variables pane, a simplified version (for the same BigInteger) like:

'((4294967295, 4294967295, 4294967295, 0, 0, 0, 0, 0), 3)'

or a mix of these styles, which you then have to parse to get the data, turn them into an array and a sign, use these to create a BigInteger and
then apply ToString to get the replacement string. It took me some debugging and quite a few IDE restarts to get the parsing straight for the
different formats. Perhaps there is a better way, i.e. one that gives you access to the real data, but I haven’t found it yet.

The visualizer package currently comes in source format, which you only have to install in the IDE (click Install in the context menu in the Project
Manager). Make sure that the BigNumbers.dpk package was built first and that the visualizer package references its .dcp file. I intend to write an
installer for this, but please don’t hurry me, as this is not something I have done before.

Currently, the code on GitHub represents a DLL expert, which must be added to the known experts in the registry. It is very easy to make this a
package-based expert instead, though.

FreePascal

In {$mode delphi}, it is possible to compile the units. FreePascal doesn’t seem to use segmented unit names (yet), so you’ll have to rename some
of the used units and qualifiers like System.Math or System.SysUtils to simply Math or SysUtils. At first, you’ll have to {$DEFINE PUREPASCAL},
because making the assembler work satisfactorily could be quite a job. It seems to work alright, if you set {$asmmode intel}, but it is a little
finicky. Stuff like LEA EAX,[EDX + EDI*ClimbSize] seems to cause problems, but [EDX + CLimbSize*EDI] works. That is a bit of a problem for me,
because I most of the time use the former variety. But I guess that, with enough time on your hands, you can make it work.

Some of the tricky routines, e.g. ToString, which uses RecursiveToString, which in its turn needs an exact alignment of bytes to get a usable string,

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

13 of 14 20/01/2019, 02:07

don’t work, but in the meantime — until you solved the problem — you can e.g. use (or wrap or rename) .ToStringClassic(10) instead. I guess the
tricky routines just need some work and some debugging to make them work under FreePascal. I only tried a quick and dirty test, did not do any
extensive tests, but it is obviously possible to make it work. Just don’t give up immediately.

Types like TArray don’t seem to work. And there is no way you can define an array of BigInteger before BigInteger is defined, so you will have to
define a type BigIntegerArray = array of BigInteger inside the BigInteger record, as a nested type. You will meet other, similar problems. Another
was the fact that there is no DivMod() function for UInt64 types, so you will have to either use the one for Longint or use div and mod separately.
It could be that the change I made there is one of the causes for the failure of RecursiveToString. This needs some investigation.

There will be other, simple problems and it is well possible that there are a few not-so-simple problems. But it looks as if BigIntegers can be used
in FreePascal.

Good luck!

Conclusion

I hope this code is useful to you. If you use some of it, please credit me. If you modify or improve the unit, please send me the modifications at
this e-mail address.

I may improve or enhance the unit myself, and I will try to post changes here. But this is not a promise. Please don’t request features.

Rudy Velthuis

Standard Disclaimer for External Links

These links are being provided as a convenience and for informational purposes only; they do not constitute an endorsement or an approval of any of the products, services or opinions of the corporation or organization or
individual. I bear no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the external site for answers to questions regarding its content.

Disclaimer and Copyright

The coding examples presented here are for illustration purposes only. The author takes no responsibility for end-user use. All content herein is copyrighted by Rudy Velthuis, and may not be reproduced in any form without
the author's permission. Source code written by Rudy Velthuis presented as download is subject to the license in the files.

Copyright © 2019 by Rudy Velthuis

Last update: Jan. 20, 2019

Back to top

Rudy's Delphi Corner - BigIntegers unit http://rvelthuis.de/programs/bigintegers.html

14 of 14 20/01/2019, 02:07

