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Calculating deco schedule with VPM 
 

This note is mainly addressed to divers and is intended to be simply an interface between 
the several introductory presentations of VPM and the explainations addressed to those 
with matematical background. As anyone who knows VPM can easily see I oversimplified 
nearly all the features and concepts to an extent sometimes I would call “extreme”. But as 
far as I know there isn’t any presentation trying to fill the gap between the bubble 
stabilization mechanisms and the way a VPM-based deco schedule is calculated. For this 
reason I hope that what follows will be useful for those interested. 

 
To understand the critical volume algorithm is to understand the way VPM is 
adapted to calculate deco schedule. The former is a single step among the several 
the latter is made of. While the classical approach (Haldane and its derivations like 
those of Bühlmann and Workman) is quite straightforward as for the logical 
sequence of steps, VPM is a bit less. So, to make clear VPM deco calculation 
algorhitm, one must understand each plug of the puzzle; once done, it is easy to tie 
everything toghether. The plugs are in essence the following two. 
 

• the way a single bubble behaves; 
• the way many bubbles behave. In other words, the concept of 

“distribution”. 
 
I shall explain the two points. 
 
The first plug: understanding a single bubble 
 
As it is known, according to VPM a bubble is stabilized by a surfactant monolayer 
(as for the adjective “monolayer” dr Kunkle would not agree, perhaps!). There is a 
lot of literature, presentations and articles on the net about this topic and I shall not 
deal with it too much. The point for us is this. We can imagine the surfactant 
monolayer as being “intelligent”. It is capable to gather surfactant molecules from 
the immediate neightborhood of the outer side if the bubble grows and to expel 
molecules from the layer if the bubble shrinks, all this to accommodate changes in 
radius. As it is known, the monolayer opposes to the surface tension according to 
Laplace law I assume known. In the following, to make reading easy, I’ll 
sometimes refer to “surface tension” to mean “the pressure due to surface tension”. 
Turning to us, since the opposite forces are equal the bubble is stable. The forces 
involved are inversely proportional to the radius; in other words, if the bubble is 
tiny the forces are (relatively!) great and if the bubble is great the forces are small. 
This is a key point in understanding VPM deco calculation. 
Once the bubble is stabilized at some pressure, it is notewhorty if not crucial to ask 
what happens if we relieve the pressure; well, even if we relieve the pressure by a 
small amount, the surfactant layer looses its packed structure. From a practical 
point of view, everything goes as if there would be no surfactant at all and we are 
left only with Laplace (better, with the pressure directed inside the bubble, due to 
surface tension). 
Now, let us imagine a stable bubble in some medium with our system at 
equilibrium. The situation is that of fig. 1 in which the initial pressure/tension is the 
same everywhere. We have 60 bar tension (the pressure in the liquid surrounding 



Corrado Bonuccelli – Calculating deco schedule with VPM 2

the bubble), 60 bar gas pressure above the liquid and 60 bar inside the bubble. At 
equilibrium surface tension does not act since surfactant opposes, so we find 60 bar 
in the bubble also. Let now suppose that the bubble radius is such that if it were not 
the surfactant monolayer, surface tension would be 20 bar (60 and 20 bar don’t 
have any specific meaning, are only for example). First, remember that surface 
tension sums up with the external pressure then let us go see what happens in a 
couple of ideal experiments. First, we relieve the gas pressure by 19 bar. This 
cancels the effetct of the surfactant, so surface tension acts alone. We find (60-
19)=41 bar outside the bubble. Surface tension adds 20 bar, so we have 
(41+20)=61 bar inside the bubble. The tension is 60 bar, so the gradient is directed 
toward the extern of the bubble; in other words the bubble shrinks. Now, we make 

Figure 1 
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the same but we relieve the pressure by 21 bar. Exactly as before, pressure is (60-
21)=39 bar, plus 20 of surface tension, total is 59 bar inside the bubble. This time, 
gradient is opposite and the bubble grows. With the values we used, it is intuitive 
that the critical pressure is 20 bar, exactly the value of the pressure due to surface 
tension. Now, we are ready for some conclusions. 
 

1. By relieving the pressure by less than 20 bar (= by less then the surface 
tension) the bubble shrinks; by relieving the pressure by more than 20 bar 
(=by more then the surface tension) the bubble grows. If we eliminate the 
redundancies from the previous statement we get: 

2. by relieving the pressure by less than the surface tension the bubble shrinks; 
by relieving the pressure by more than the surface tension the bubble grows. 
Now: 

3. since the bubble is stable and surface tension is low when a bubble is big 
and is high when a bubble is small, it follows that: 

4. to initiate the growth of a big stable bubble I have to relieve the 
hydrostatic pressure by a small amount; to initiate the growth of a little 
stable bubble I have to relieve the hydrostatic pressure by a large amount. 

 
Now, let us name “stable bubble” as “nucleus” and we are almost done for now. 
Our last step is depicted in fig. 2 in which we find 3 nuclei (black, left) of different 
size. It should be easy to understand what happens; as the difference between the 

bottom and the first stop grows, more and more little nuclei are said to be 
“activated” and grow into bubbles. This is another key point in understanding 
VPM, so it is important to think over the figure until it becomes clear. 
 

Figure 2 
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The second plug: understanding a population of bubbles 
 
Few words about this point. At least in gel (scientists say “in vitro” from latin “in 
the glass” or better, in this context, “in a test tube”) a population of bubbles would 
appear something like in fig 3. 

 
By eye inspection we can see from now that there are few big bubbles and more 
and more bubbles as the radius decreases. When dealing with these situations, it is 
customary to introduce the concept of distribution I am going to explain with the 
help of fig. 4. Let us start from the top, and imagine that we are dealing with pearls. 
One of the first things to do after fishing is to split the pearls according to their 

dimensions. There are 
several boxes each of 
them contains pearls of 
some radius plus or 
minus some tolerance. 
Referring to fig. 4 top, 
we can think the numbers 
on X-axis as inches (do 
not be tempted to steal 
the pearls!). So, for 
example, the box labeled 
6’’ contains pearls whose 
radius is between 5.5 and 
6.5’’, since the radii are 
spaced by 1’’ (see X-axis 
marks). Then, we count 
the pearls in each box 
and graph the results. 
Everything is quite 
straightforward for now. 
The next step is less 
intuitive; so we have to 
pay some attention, or, 
better, think it over and 
over if needed. For 
reasons that will be 
clearer soon, we want to 
know how many pearls 
are greater or equal than 

Figure 3 

Figure 4 



Corrado Bonuccelli – Calculating deco schedule with VPM 5

some value of radius, say 5’’. To find the answer, we sum up all the values starting 
from 5’’ forward. According to the figure, we have (5+3+2)=10 (see shaded and 
hatched zones). By doing the same for all the values, we get the graph of fig 4 
bottom, to be read as follows: given some value X of the radius, Y is the number 
of items (of course, not necessarily pearls) whose radius is greater or equal to X. 
Be sure to check the figure in some cases to understand how things go. Now, let us 
substitute bubbles for pearls and we are done again. Note that the figure at the 
bottom contains exactly the same information of that above; for VPM purposes it is 
more useful the last form (the one at the bottom) that is named integral 
distribution. 
The “real” distribution of the bubbles is similar to that in fig. 4; the shape is 
exponential but we must beware of being mislead by gas exchange law, radioactive 
decay and so on. Exponential function is a direct consequence of a very basic kind 
of phisical “behaviour” that it is not necessary to understand in depth here. 
Exponential distribution has nothing to do with gas exchange, unless we fathom an 
extremely basic level of ideas into the hidden secrets of the phisical world. 
 
Tying the plugs 
 
Now let us consider fig. 5 that summarises all we have learned until now (nuclei 
are depicted as little stars). Consider a tissue with its exponentially distributed 
population of bubbles, and consider that – of course – what is valid for a bubble 
remains valid for all the bubbles in the population. The basic statement is this: as 
the supersaturation (=difference between bottom and first stop) grows, more and 

Figure 5 
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more nuclei grow into bubbles. Still referring to fig 5, we see that the number of 
nuclei initated into growth is directly found on the Y-axis if we use the integral 
distribution as we have done here. Count the number of bubbles for each of the 3 
cases and check it in the graphs on the right; for purposes of understanding how the 
things go, it is very important to make such kinds of verifications. 
 
Calculating the deco schedule 
 
We are almost ready to understand how VPM can be used to calculate a deco 
schedule. There are several if not many assumptions and details behind this, but 
those important for us are the following: 
 
1) the body is modeled with the “usual” compartments a-la-Haldane 

(exponential gas exchange); 
2) the body tolerates a maximum amount of free gas (that in the bubbles, of 

course) we name from now on Vgas; 
3) the volume of free gas is the product of: 

a) number of bubbles (if with 100 bubbles I have 1 cf of gas, with 200 
bubbles I have 2 cf of gas); 

b) the time the supersaturation acts (if a gradient of 1 bar acts for 1 h 
and produces 1 cf of gas, 1 bar for 2 h produces 2 cf of gas); 

c) the gradient acting (if a gradient of 1 bar acts for 1 h and produces 
1 cf of gas, a gradient of 2 bar for 1 hr will produce 2 cf of gas); 

 
I believe that due at least to the remarks in parentheses the assumptions be quite 
intuitive, or, at least I hope so. Firmly believing that I am right ☺ I shall not 
comment on them. Rather, let us follow the way the calculation proceeds. 
 
The idea behind is quite simple. We start with some value for the gradient G, say 
1 bar. But this starting point requires some explainations. The VPM deco schedule 
is calculated exactly the same way the classical method would do. In other words 
everything goes exactly as if we used for example Abyss software by setting all the 
b values equal to 1.0. We are left with the a’s being no more no less than the 
different gradients each tissue tolerates; since all b’s are equal to one, it means that 
the supersaturation tolerated by each compartment is depth independent. As for the 
classical method there is a lot of easily understandable literature on the net so, 
again, I shall not deal with this in detail. The important point is that at this level 
VPM works exactly as the classical method does. The (how great!) differences start 
from what follows. 
 
In fig 6 we can see how the deco schedule calculation is performed. Basically, we 
can divide the process of re-equilibration with the environment in two parts, the 
first one in the water, the second one after surfacing. The dashed line is that of the 
true time course of the gradient G. Of course, G attains its maximum value at the 
beginning of each step, than decreases until the tissue tension allows for ascending 
to the next step where – by definition – we find G again and so on up the surface. 
To simplify calculations, VPM assumes that G is constant along the ascent and 
decreases exponentially after surfacing (continuous line). Even if we lack 
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mathematical background we can easily calculate the free gas volume during the 
ascent in water. It is simply: 
 

• the number of bubbles (more on this below!) by 
• the ascent time by 
• the gradient G, 

 
because all these quantities are constant (and G is constant only because so we 
assumed). But as for the second part, the exponential decay of G introduces 
complications that can be overcome by some math; this happens because G is no 
longer constant along the time. And we can’t assume it constant because – unlikely 
the first part underwater - we would introduce an unacceptable error (consider 
ascent time vs. 24/48 h). Math details are not too important here; it suffices to 
know that the calculation is possible (and quite easy for those who know calculus). 
We can see how the gas volume grows (thick continuous line) until the equilibrium 
is reached. BTW this is the reason V-planner wants to know something about the 
time we assume for the completion of the process; it does not allow for calculation 
of deco schedule until we choose 24 or 48 h. VPM must to “know” in advance the 
time for complete equilibration since unlikely classical methods, decompression 
still continues once surfaced and the gas phase volume depends upon the entire 

Figure 6 



Corrado Bonuccelli – Calculating deco schedule with VPM 8

history, including that part outside the water. Gas phase continues growing after 
surface, as – for example - those bent well know. 
 
Last, the critical volume algorithm 
 
What happens with different values for G? Some interesting facts. Remember that 
G dictates: 
 

• how many nuclei will become bubbles and… 
• …that part of the total deco time we spend in water. This because as G 

decreases stops duration times increase, and the opposite holds. 
 
It happens that since the total volume of free gas depends upon all the three factors, 
a straigthforward calculation is no longer possible. What to do? Nothing from our 
side because from this point on, everything becomes mainly a matter of math 
machinery. Neverthless, we can still understand the basic nature of the algorithm 
and how it works. Let us see. 
 

1. We start with some small (but not casual, since it is calculated from a 
precise rationale) value for G; 

2. Since G is known, we can calculate the deco schedule because all we need 
for doing this is G itself (along with mixes, profile, and so on, of course, all 
fixed factors with respect for this context); from the calculated schedule, we 
get also the total deco time underwater, say Tdeco, by summing up the stop 
times; 

3. Since we have G we have also the number of nuclei activated into growth, 
in other words, the number of bubbles Nbub (fig. 5); 

4. Since we have G, Tdeco and Nbub, we can calculate the total free gas volume 
Viter (more about this “new name” below) that developes along 
(Tdeco+24/48 h). 

 
Is the above volume the “right one”? Not necessarily. Generally speaking the 
answer is obviously no. Rather, it should be remembered that assumption 2) holds; 
according to it there is a definite limit of Vgas we can tolerate. The value of Vgas 
would require some comments; for our purposes we can say that this is in some 
sense one of the “weak points” of VPM, but it suffices to say that Vgas is a fixed 
and known value (for software users, it is closely related to the parameter lambda). 
 
So, we are – apparently – faced with a hard problem of reverse engineering. 
Starting with Vgas, the profile, and so on, we must to find that value of G such that 
the schedule calculated using G is “the right one”, in other words the one that woud 
result in the value of Vgas. Of course we could accept a value less than Vgas but this 
means a too conservative deco. In VPM, Vgas plays the role of the various a and b 
of Bühlmann, the Workman M values and so on. But there is no need for reverse 
engineering. The nature of the algorithm helps us because the result Viter (see 
above) embeds all the informations needed to find another and better value for G 
and start again the procedure from point 2. It is easy now to understand the reason 
VPM is said to be an iterative algorithm. What happens is depicted in fig. 7; for 
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each iteration we can calculate a value of Viter that approaches Vgas closer and closer 
(it is said asymptotically) and we say that the algorithm converges. Each iteration a 
new value of G is found and the entire calculation is made again. Note that as 
iterations proceed: 
 

• the gradient G increases; 
• More and more nuceli of decreasing radius are activated into growth (this 

last point is important also to understand how VPM deals with 
conservativism, see below). 

 
In principle, this process is endless. In practice, after few iterations (typically 2-3) 
the difference from some value of Viter and that of the previous step is little enough 
to allow stop the procedure; this is due also to the fact that stop times are rounded 
to the nearest integer upper value (and to some other reasons). BTW, in practice, as 
typical dives are concerned the algorithm starts so close to the correct value for G 
that often no iterations are needed. This is the reason V-planner (in this case, the 
VPM program by Erik working behind the scene) allows the user for choosing to 
use the critical volume algorythm or not. Unless we are planning very aggressive 
dives, usually the error between the “true” profile and the starting one is practically 
small enough to be neglected. In any case, since G grows along the iterations, if we 
choose not to use the critical volume algorithm, that means adding some safety 
factor to our profile. On the contrary, if - only for reasoning purposes - G decreased 
along the procedure, it would mean that the deco schedule sequence would be more 
and more conservative, and the critical volume algorithm wouldn’t be optional but 
a more intrinsic component of the VPM algorithm. It should be an essential part of 
the calculation procedure to ensure profile safety. 

Figure 7 
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Some other points 
 
We are very close to that point beyond which we would be entraped in many 
technical details, so it is the time to stop. As a last remark and since the interest in 
VPM deco is growing, let us spend few words about the way VPM algorithm deals 
with conservativisms. Basically, everything is pivoted around a feature of VPM we 
have not yet dealt with. To allow for a better fitting of experimental data, Yount 
and Hoffman made another assumption, that there is a treshold Vundef such that the 
gas volume not exceeding Vundef is tolerated undefinitely (this accounts for the 
weeks needed for ascent from saturation, for example). As we can now understand 
Vundef is closely related to some corresponding value for G and the consequent 
number of bubbles. But in turn these are related to some value r0 of the bubble 
radius. The gas in all the bubbles whose radius is greater or equal to r0 is tolerated 
undefinitely and “does not play any role in the calculations” (note the quotation 
marks and forgive me if you are a VPM guru!). The situation is that in figs. 8 
and 9; as we can see it is better to reason in terms of the bubble radius. The only 
gas “to be decompressed” is that in the gray zone between the radius corresponding 

to Vgas (left) and Vundef (right). In other words, we can think G as the sum of two 
G’s, the first is fixed and accounts for Vundef, the second grows along the iterations 
and accounts for the gas we couldn’t tolerate unless we wait the necessary time (in 
other words, the deco stops). It is easy to see that once fixed all the other 
parameters, the schedule is more and more aggressive as r0 decreases, as one can 
check by playing a bit with V-planner for example. Now, once understood the 
concept, r0 is nothing else than the “critical radius” found in the program (see for 
example, the advanced settings of V-planner). 
 
Even a brief explaination of the other parameters involved in the algorytm would 
be outside the scope of this note, so I refer the reader to the literature available. A 
few words for lambda (as I said, closely related to the maximum volume Vgas) and 

Figure 8 
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for the so-called bubble regeneration 
constant. The latter accounts for the 
following phenomenon. Imagine we 
submit some bubble of some radius r1 to 
compression to some pressure. As we 
know, bubble shrinks and through the 
expulsion of surfactant molecules the 
bubble finds its new equilibrium at some 
radius r2, smaller than r1. In general, all 
the bubble of the population in our 
sample will shrink (obeying to the so 
called ordering hypotesis the reader can 
find dealt with in the literature). It 
happens that due to complex phenomena 
pertaining to statistical physics, the 
original distribution is “recovered” after 
some time (of the order of weeks). The 
recovering time function is, once again, 
exponential. So, the regeneration 
constant resambles the compartiment 
halftime, the difference being that the 
halftime is now that of the exponential 

time course of the recovering. As we can expect from its range, this parameter 
becomes important as our dives span along days and weeks. But, as the reader can 
see by experimenting with the program and changing the parameters found in the 
“advanced setting” window, by far the most important parameter is r0 since deco 
schedule is most sensitive to r0 and much less to the other parameters. As a first 
approach to VPM understanding r0 is the first thing to do. 
 
Last but not least, it is very interesting to compare the gradient G according to the 
classical method and to VPM (fig. 10). The curves refer to a fast tissue and the 
values are those of the VPM program by Erik Baker; we can see the gradient 
resulting from the Bühlmann a and b (straight line) and the gradients of VPM. As 
we can expect, while the gradient is time independent for Bühlmann, as VPM is 
concerned G varies according to depth and bottom time of the dive; this is the 
reason because we find a family of curves rather than only one (in this sense, the 
Bühlmann straight line is a particular kind of curve). 
It can be seen how much VPM is rich and interesting as for phenomenology and 
behaviour. Moreover, it is intrinsically free from the many haunting J-factors and 
other trimming points often, if not always, completely unrelated with the real word. 
This is not to say that VPM is a “perfect” model. But at least for its connection 
with the basic level of the involved phenomena, VPM is certainly a great step 
forward. 

Fig. 9 
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Figure 10 


